17CS36
USN

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Discrete Mathematical Structures

Time: 3 hrs .

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Let p and q be primitive statements for which the conditional $\mathrm{p} \rightarrow \mathrm{q}$ is false. Determine the truth value of the following compound propositions $\mathrm{p} \wedge \mathrm{q}, \neg \mathrm{p} \vee \mathrm{q}, \mathrm{q} \rightarrow \mathrm{p}, \neg \mathrm{q} \rightarrow \neg \mathrm{p}$
(07 Marks)
b. Show that $S V R$ is a tautology implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(\mathrm{Q} \rightarrow \mathrm{S})$ using rules of inference.
(07 Marks)
c. Define Converse, Inverse and Contra positive with an illustration.

OR

2 a. Define tautology. Show that for any proposition p, q, r the compound propositions
$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology.
(06 Marks)
b. Prove the following logical equivalence
$\{(\mathrm{p} \rightarrow \mathrm{q}) \wedge[\neg \mathrm{q} \wedge(\mathrm{r} \wedge \neg \mathrm{q})]\} \Leftrightarrow \neg(\mathrm{q} \vee \mathrm{p})$
(07 Marks)
c. Find whether the following argument is valid or not.

If a triangle has 2 equal sides, then it is isosceles
If a triangle is isosceles, then it has 2 equal angles
A certain $\triangle \mathrm{ABC}$ does not have 2 equal angles
\therefore The $\triangle \mathrm{ABC}$ does not have 2 equal sides.
(07 Marks)

Module- 2

3 a. Prove by mathematical induction that, for all integer $\mathrm{n} \geq 1$.

$$
1+2+3+\ldots \ldots \ldots \ldots .+n=\frac{1}{2} n(n+1)
$$

(08 Marks)
b. The Fibonacci numbers are designed recursively by $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Evaluate F_{2} to F_{10}.
(04 Marks)
c. Find the number of permutations of the letters of the word MASSASAUGA. In how many of these, all 4 A's are together? How many of them begin with S?
(08 Marks)

OR

4 a. Prove by mathematical induction that $1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)$ for all integers $\mathrm{n} \geq 1$.
(08 Marks)
b. The Lucas number's are defined recursively by $\mathrm{L}_{0}=2, \mathrm{~L}_{1}=1$ and $\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}-1}+\mathrm{L}_{\mathrm{n}-2}$ for $\mathrm{n} \geq 2$. Evaluate L_{2} to L_{10}
(06 Marks)
c. There are four bus routes between the places A and B, three bus routes between the places B and C . Find the number of ways a person can make a round trip from A to C via B , if he does not use a route more than once.
(06 Marks)

Module-3

5 a. Let $f: R \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{cc}3 x-5 \text { for } x>0 \\ -3 x+1 & \text { for } x \leq 0\end{array}\right.$
Determine $f(0), f(-1), f(5 / 3), \mathrm{f}^{-1}(-1), \mathrm{f}^{-1}(-3), \mathrm{f}^{-1}(6), \mathrm{f}^{-1}([-5,5])$.
(07 Marks)

17CS36
b. ABC is an equilateral triangular, whose sides are of length 1 cm each. If we select 5 points inside the triangle, prove that atleast two of these points are such that the distance between then is less than $1 / 2 \mathrm{~cm}$.
(06 Marks)
c. Let $\mathrm{A}=\{1,2,3,4\}$ and R be a relations on A defined by $x R y$ if and only if " x divides y ", written x / y. Write down R as a set of order pairs, draw the diagraph of R and determine indegree and outdegree of the vertices of the graph.
(07 Marks)

OR

a. State pigeon hole principle. A bag contains 12 pairs of socks (each pair in different color). If a person drawn the socks one by one at random, determine atmost how many draws are required to get atleast one pair of matched socks.
(05 Marks)
b. Let f, g, h be functions from z to z defined by $f(x)=x-1, g(x)=3 x, h(x)= \begin{cases}0 & \text { if } x \text { is even } \\ 1 & \text { if } x \text { is odd }\end{cases}$ Determine $(\mathrm{fo}(\mathrm{goh}))(\mathrm{x})$ and $((\mathrm{fog}) \mathrm{oh})(\mathrm{x})$ and verify that fo $(\mathrm{goh})=(\mathrm{fog})$ oh .
(07 Marks)
c. Let, $R=\{(1,1),(1,2),(1,3),(1,4),(2,4),(2,2),(3,3),(4,4)\}$ be relation, verify that R is a partial ordering relation or not. If yes, draw the Hasse diagram for R.
(08 Marks)

Module-4

7 a. Determine the number of positive integers n such that $1 \leq \mathrm{n} \leq 100$ and n is not divisible by 2,3 or 5 .
(07 Marks)
b. Find the number of derangements of $1,2,3,4$ and list them.
(05 Marks)
c. The number of virus affected files in a system is 1000 (to start with) and this increases by 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day?
(08 Marks)

OR

8 a. In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, FUN or BYTE occurs?
(08 Marks)
b. An Apple, a Banana, a Mango and an Orange are to be distributed to four boys B_{1}, B_{2}, B_{3}, B_{4}. The boys B_{1} and B_{2} do not wish to have Apple, the boy B_{3} does not want Banana or Mango and B_{4} refuses orange. In how many ways the distribution can be made so that no boy is displeased?
(07 Marks)
c. Solve the recurrence relation

$$
a_{n}-6 a_{n-1}+9 a_{n-2}=0 \text { for } n \geq 2 \text {, given that } a_{0}=5, a_{1}=12 \text {. }
$$

(05 Marks)

Module-5

9 a. Define Isolated vertex, complete graph, Trail path with example.
(06 Marks)
b. Explain Konigsberg bridge problem.
(07 Marks)
c. Using the mergesort method, sort the list

$$
7,3,8,4,5,10,6,2,9
$$

(07 Marks)

OR

10 a. If $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a simple graph, prove that

$$
2|\mathrm{E}| \leq|\mathrm{V}|^{2}-|\mathrm{V}|
$$

(06 Marks)
b. Prove that a tree with n yertices has $\mathrm{n}-1$ edges.
(06 Marks)
c. Obtain the prefix code represented by the following labeled complete binary tree shown in Fig.Q10(c) and also find the code for the words abc, cdb, bde.
(08 Marks)

Fig.Q10(c)

